Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomedicines ; 11(4)2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37189832

RESUMO

Saporin is a type 1 ribosome-inactivating protein widely used as toxic payload in the construction of targeted toxins, chimeric molecules formed by a toxic portion linked to a carrier moiety. Among the most used carriers, there are large molecules (mainly antibodies) and small molecules (such as neurotransmitters, growth factors and peptides). Some saporin-containing targeted toxins have been used for the experimental treatment of several diseases, giving very promising results. In this context, one of the reasons for the successful use of saporin lies in its resistance to proteolytic enzymes and to conjugation procedures. In this paper, we evaluated the influence of derivatization on saporin using three heterobifunctional reagents, namely 2-iminothiolane (2-IT), N-succinimidyl 3-(2-pyridyldithio)propionate (SPDP) and 4-succinimidyloxycarbonyl-α-methyl-α-[2-pyridyldithio]toluene (SMPT). In order to obtain the highest number of inserted -SH groups with the lowest reduction of saporin biological activities, we assessed the residual ability of saporin to inhibit protein synthesis, to depurinate DNA and to induce cytotoxicity after derivatization. Our results demonstrate that saporin maintains an excellent resistance to derivatization processes, especially with SPDP, and permit us to define reaction conditions, in which saporin biological properties may not be altered. Therefore, these findings provide useful information for the construction of saporin-based targeted toxins, especially with small carriers.

2.
Toxins (Basel) ; 16(1)2023 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-38276525

RESUMO

Ribosome-inactivating proteins (RIPs) are plant toxins that were identified for their ability to irreversibly damage ribosomes, thereby causing arrest of protein synthesis and induction of cell death. The RIPs purified from Adenia plants are the most potent ones. Here, we describe a novel toxic lectin from Adenia heterophylla caudex, which has been named heterophyllin. Heterophyllin shows the enzymatic and lectin properties of type 2 RIPs. Interestingly, in immunoreactivity experiments, heterophyllin poorly cross-reacts with sera against all other tested RIPs. The cytotoxic effects and death pathways triggered by heterophyllin were investigated in three human-derived cell lines: NB100, T24, and MCF7, and compared to ricin, the most known and studied type 2 RIP. Heterophyllin was able to completely abolish cell viability at nM concentration. A strong induction of apoptosis, but not necrosis, and the involvement of oxidative stress and necroptosis were observed in all the tested cell lines. Therefore, the enzymatic, immunological, and biological activities of heterophyllin make it an interesting molecule, worthy of further in-depth analysis to verify its possible pharmacological application.


Assuntos
Proteínas de Plantas , Ricina , Humanos , Proteínas de Plantas/metabolismo , Proteínas Inativadoras de Ribossomos Tipo 2/metabolismo , Ricina/toxicidade , Ricina/metabolismo , Proteínas Inativadoras de Ribossomos/toxicidade , Proteínas Inativadoras de Ribossomos/metabolismo , Ribossomos/metabolismo , Biossíntese de Proteínas
3.
Front Pharmacol ; 13: 972046, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36052121

RESUMO

Immune checkpoint mechanisms are important molecular cell systems that maintain tolerance toward autoantigens in order to prevent immunity-mediated accidental damage. It is well known that cancer cells may exploit these molecular and cellular mechanisms to escape recognition and elimination by immune cells. Programmed cell death protein-1 (PD-1) and its natural ligand programmed cell death ligand-1 (PD-L1) form the PD-L1/PD-1 axis, a well-known immune checkpoint mechanism, which is considered an interesting target in cancer immunotherapy. In fact, the expression of PD-L1 was found in various solid malignancies and the overactivation of PD-L1/PD-1 axis results in a poor patient survival rate. Breaking PD-L1/PD-1 axis, by blocking either the cancer side or the immune side of the axis, is currently used as anti-cancer strategy to re-establish a tumor-specific immune response. For this purpose, several blocking antibodies are now available. To date, three anti-PD-L1 antibodies have been approved by the FDA, namely atezolizumab, durvalumab and avelumab. The main advantages of anti-PD-L1 antibodies arise from the overexpression of PD-L1 antigen by a high number of tumor cells, also deriving from different tissues; this makes anti-PD-L1 antibodies potential pan-specific anti-cancer molecules. Despite the good results reported in clinical trials with anti-PD-L1 antibodies, there is a significant number of patients that do not respond to the therapy. In fact, it should be considered that, in some neoplastic patients, reduced or absent infiltration of cytotoxic T cells and natural killer cells in the tumor microenvironment or presence of other immunosuppressive molecules make immunotherapy with anti-PD-L1 blocking antibodies less effective. A strategy to improve the efficacy of antibodies is to use them as carriers for toxic payloads (toxins, drugs, enzymes, radionuclides, etc.) to form immunoconjugates. Several immunoconjugates have been already approved by FDA for treatment of malignancies. In this review, we focused on PD-L1 targeting antibodies utilized as carrier to construct immunoconjugates for the potential elimination of neoplastic cells, expressing PD-L1. A complete examination of the literature regarding anti-PD-L1 immunoconjugates is here reported, describing the results obtained in vitro and in vivo. The real potential of anti-PD-L1 antibodies as carriers for toxic payload delivery is considered and extensively discussed.

4.
Behav Pharmacol ; 32(4): 295-307, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33595952

RESUMO

Pubertal male Syrian hamsters (Mesocricetus auratus) treated with anabolic/androgenic steroids (AASs) during adolescence (P27-P56) display a highly intense aggressive phenotype that shares many behavioral similarities with pathological aggression in youth. Anticonvulsant drugs like valproate that enhance the activity of the γ-aminobutyric acid (GABA) neural system in the brain have recently gained acceptance as a primary treatment for pathological aggression. This study examined whether valproate would selectively suppress adolescent AAS-induced aggressive behavior and whether GABA neural signaling through GABAA subtype receptors in the latero-anterior hypothalamus (LAH; an area of convergence for developmental and neuroplastic changes that underlie aggression in hamsters) modulate the aggression-suppressing effect of this anticonvulsant medication. Valproate (1.0-10.0 mg/kg, intraperitoneal) selectively suppressed the aggressive phenotype in a dose-dependent fashion, with the effective anti-aggressive effects beginning at 5 mg/kg, intraperitoneally. Microinfusion of the GABAA receptor antagonist bicuculline (7.0-700 ng) into the LAH reversed valproate's suppression of AAS-induced aggression in a dose-dependent fashion. At the 70 ng dose of bicuculline, animals expressed the highly aggressive baseline phenotype normally observed in AAS-treated animals. These studies provide preclinical evidence that the anticonvulsant valproate selectively suppresses adolescent, AAS-induced aggression and that this suppression is modulated, in part, by GABA neural signaling within the LAH.


Assuntos
Agressão , Androgênios , Controle Comportamental/métodos , Antagonistas GABAérgicos/farmacologia , Hipotálamo , Congêneres da Testosterona , Ácido Valproico/farmacologia , Adolescente , Agressão/efeitos dos fármacos , Agressão/fisiologia , Agressão/psicologia , Androgênios/metabolismo , Androgênios/farmacologia , Animais , Anticonvulsivantes/farmacologia , Comportamento Animal/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Mesocricetus , Plasticidade Neuronal/efeitos dos fármacos , Plasticidade Neuronal/fisiologia , Transdução de Sinais/efeitos dos fármacos , Congêneres da Testosterona/metabolismo , Congêneres da Testosterona/farmacologia
5.
J Mol Cell Cardiol ; 151: 15-30, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33159916

RESUMO

The prominent impact that coronary microcirculation disease (CMD) exerts on heart failure symptoms and prognosis, even in the presence of macrovascular atherosclerosis, has been recently acknowledged. Experimental delivery of pericytes in non-revascularized myocardial infarction improves cardiac function by stimulating angiogenesis and myocardial perfusion. Aim of this work is to verify if pericytes (Pc) residing in ischemic failing human hearts display altered mechano-transduction properties and to assess which alterations of the mechano-sensing machinery are associated with the observed impaired response to mechanical cues. RESULTS: Microvascular rarefaction and defects of YAP/TAZ activation characterize failing human hearts. Although both donor (D-) and explanted (E-) heart derived cardiac Pc support angiogenesis, D-Pc exert this effect significantly better than E-Pc. The latter are characterized by reduced focal adhesion density, decreased activation of the focal adhesion kinase (FAK)/ Crk-associated substrate (CAS) pathway, low expression of caveolin-1, and defective transduction of extracellular stiffness into cytoskeletal stiffening, together with an impaired response to both fibronectin and lysophosphatidic acid. Importantly, Mitogen-activated protein kinase kinase inhibition restores YAP/TAZ nuclear translocation. CONCLUSION: Heart failure impairs Pc mechano-transduction properties, but this defect could be reversed pharmacologically.


Assuntos
Insuficiência Cardíaca/patologia , Mecanotransdução Celular , Miocárdio/patologia , Pericitos/metabolismo , Pericitos/patologia , Actomiosina/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Fenômenos Biomecânicos , Caveolina 1/metabolismo , Núcleo Celular/metabolismo , Células Cultivadas , Vasos Coronários/patologia , Vasos Coronários/fisiopatologia , Citoesqueleto/metabolismo , Adesões Focais , Humanos , Microvasos/patologia , Microvasos/fisiopatologia , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Isquemia Miocárdica/metabolismo , Isquemia Miocárdica/patologia , Transporte Proteico , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica , Proteínas de Sinalização YAP
6.
Elife ; 92020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32613945

RESUMO

The mouse cerebral cortex contains neurons that express choline acetyltransferase (ChAT) and are a potential local source of acetylcholine. However, the neurotransmitters released by cortical ChAT+ neurons and their synaptic connectivity are unknown. We show that the nearly all cortical ChAT+ neurons in mice are specialized VIP+ interneurons that release GABA strongly onto other inhibitory interneurons and acetylcholine sparsely onto layer 1 interneurons and other VIP+/ChAT+ interneurons. This differential transmission of ACh and GABA based on the postsynaptic target neuron is reflected in VIP+/ChAT+ interneuron pre-synaptic terminals, as quantitative molecular analysis shows that only a subset of these are specialized to release acetylcholine. In addition, we identify a separate, sparse population of non-VIP ChAT+ neurons in the medial prefrontal cortex with a distinct developmental origin that robustly release acetylcholine in layer 1. These results demonstrate both cortex-region heterogeneity in cortical ChAT+ interneurons and target-specific co-release of acetylcholine and GABA.


Assuntos
Acetilcolina/metabolismo , Encéfalo/metabolismo , Colina O-Acetiltransferase/metabolismo , Neurônios/metabolismo , Ácido gama-Aminobutírico/metabolismo , Animais , Córtex Cerebral/metabolismo , Heterozigoto , Interneurônios/metabolismo , Camundongos , Córtex Pré-Frontal/metabolismo , Terminações Pré-Sinápticas/metabolismo
7.
Eur J Immunol ; 49(8): 1213-1225, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31034584

RESUMO

Among the family of regulatory B cells, the subset able to produce interleukin-10 (IL-10) is the most studied, yet its biology is still a matter of investigation. The DNA methylation profiling of the il-10 gene locus revealed a novel epigenetic signature characterizing murine B cells ready to respond through IL-10 synthesis: a demethylated region located 4.5 kb from the transcription starting site (TSS), that we named early IL10 regulatory region (eIL10rr). This feature allows to distinguish B cells that are immediately prone and developmentally committed to IL-10 production from those that require a persistent stimulation to exert an IL-10-mediated regulatory function. These late IL-10 producers are instead characterized by a delayed IL10 regulatory region (dIL10rr), a partially demethylated DNA portion located 9 kb upstream from the TSS. A demethylated region was also found in human IL-10-producing B cells and, very interestingly, in some B-cell malignancies, such as chronic lymphocytic leukemia and mantle cell lymphoma, characterized by an immunosuppressive microenvironment. Our findings define murine and human regulatory B cells as an epigenetically controlled functional state of mature B cell subsets and open a new perspective on IL-10 regulation in B cells in homeostasis and disease.


Assuntos
Subpopulações de Linfócitos B/fisiologia , Linfócitos B Reguladores/fisiologia , Interleucina-10/metabolismo , Leucemia Linfocítica Crônica de Células B/genética , Linfoma de Célula do Manto/genética , Sequências Reguladoras de Ácido Nucleico/genética , Animais , Diferenciação Celular , Metilação de DNA , Feminino , Perfilação da Expressão Gênica , Humanos , Tolerância Imunológica , Imunidade Humoral , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Microambiente Tumoral
8.
Int J Cancer ; 144(4): 755-766, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30259975

RESUMO

Bromodomain and Extra-Terminal (BET) proteins are historically involved in regulating gene expression and BRD4 was recently found to be involved in DNA damage regulation. Aims of our study were to assess BRD4 regulation in homologous recombination-mediated DNA repair and to explore novel clinical strategies through the combinations of the pharmacological induction of epigenetic BRCAness in BRCA1 wild-type triple negative breast cancer (TNBC) cells by means of BET inhibitors and compounds already available in clinic. Performing a dual approach (chromatin immunoprecipitation and RNA interference), the direct relationship between BRD4 and BRCA1/RAD51 expression was confirmed in TNBC cells. Moreover, BRD4 pharmacological inhibition using two BET inhibitors (JQ1 and GSK525762A) induced a dose-dependent reduction in BRCA1 and RAD51 levels and is able to hinder homologous recombination-mediated DNA damage repair, generating a BRCAness phenotype in TNBC cells. Furthermore, BET inhibition impaired the ability of TNBC cells to overcome the increase in DNA damage after platinum salts (i.e., CDDP) exposure, leading to massive cell death, and triggered synthetic lethality when combined with PARP inhibitors (i.e., AZD2281). Altogether, the present study confirms that BET proteins directly regulate the homologous recombination pathway and their inhibition induced a BRCAness phenotype in BRCA1 wild-type TNBC cells. Noteworthy, being this strategy based on drugs already available for human use, it is rapidly transferable and could potentially enable clinicians to exploit platinum salts and PARP inhibitors-based treatments in a wider population of TNBC patients and not just in a specific subgroup, after validating clinical trials.


Assuntos
Proteína BRCA1/genética , Dano ao DNA , Proteínas Nucleares/genética , Rad51 Recombinase/genética , Reparo de DNA por Recombinação/genética , Fatores de Transcrição/genética , Antineoplásicos/farmacologia , Azepinas/farmacologia , Proteína BRCA1/metabolismo , Benzodiazepinas/farmacologia , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Cisplatino/farmacologia , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/metabolismo , Ftalazinas/farmacologia , Piperazinas/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Interferência de RNA , Rad51 Recombinase/metabolismo , Reparo de DNA por Recombinação/efeitos dos fármacos , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/metabolismo , Triazóis/farmacologia , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia
9.
Front Physiol ; 9: 1394, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30327618

RESUMO

Extracellular vesicles (EV) are at the center of an intense activity of investigation, both for their possible employment as biomarkers of ongoing pathologic processes and for their broad range of biological activities. EV can promote tissue repair in very different pathologic settings, including hindlimb and myocardial ischemia. Importantly, the exact mode of action of EV is still partly understood, since they may act by modulating growth factors and cytokines, signaling pathways, and by transferring non-coding RNAs to target cells. However, the term EV identifies cell derived, enveloped particles very heterogeneous in size, composition, and biogenesis. Therefore, part of the controversies on the biological effects exerted by EV is a consequence of differences in methods of separation that result in the enrichment of different entities. Since technical challenges still hamper the highly specific sorting of different EV subpopulations, up to now only few investigators have tried to verify differences in the biological effects of specific EV subtypes. This review summarizes the current state of the art on the comprehension of mechanisms involved in EV biogenesis and release, which is a prerequisite for understanding and investigating the impact that pathology and drug therapy may exert on the secretion and composition of EV. Finally, we described both the mechanism involved in the modulation of EV secretion by drugs commonly used in patients affected by heart failure, and how pathophysiological mechanisms involved in heart disease modify EV secretion.

10.
Cancers (Basel) ; 10(8)2018 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-30110953

RESUMO

Molecular characterization is currently a key step in NSCLC therapy selection. Circulating tumor cells (CTC) are excellent candidates for downstream analysis, but technology is still lagging behind. In this work, we show that the mutational status of NSCLC can be assessed on hypermetabolic CTC, detected by their increased glucose uptake. We validated the method in 30 Stage IV NSCLC patients: peripheral blood samples were incubated with a fluorescent glucose analog (2-NBDG) and analyzed by flow cytometry. Cells with the highest glucose uptake were sorted out. EGFR and KRAS mutations were detected by ddPCR. In sorted cells, mutated DNA was found in 85% of patients, finding an exact match with primary tumor in 70% of cases. Interestingly, in two patients multiple KRAS mutations were detected. Two patients displayed different mutations with respect to the primary tumor, and in two out of the four patients with a wild type primary tumor, new mutations were highlighted: EGFR p.746_750del and KRAS p.G12V. Hypermetabolic CTC can be enriched without the need of dedicated equipment and their mutational status can successfully be assessed by ddPCR. Finally, the finding of new mutations supports the possibility of probing tumor heterogeneity.

11.
Neuro Oncol ; 20(6): 776-787, 2018 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-29228370

RESUMO

Background: While recent genome-wide association studies have suggested novel low-grade glioma (LGG) stratification models based on a molecular classification, we explored the potential clinical utility of patient-derived cells. Specifically, we assayed glioma-associated stem cells (GASC) that are patient-derived and representative of the glioma microenvironment. Methods: By next-generation sequencing, we analyzed the transcriptional profile of GASC derived from patients who underwent anaplastic transformation either within 48 months (GASC-BAD) or ≥7 years (GASC-GOOD) after surgery. Gene set enrichment and pathway enrichment analyses were applied. The prognostic role of a nuclear factor-kappaB (NF-κB) signature derived from GASC-BAD was tested in 530 newly diagnosed diffuse LGG patients comprised within The Cancer Genome Atlas (TCGA) database. The prognostic value of the GASC upstream regulator p65 NF-κB was assessed, by univariate and multivariate Cox analyses, in a single center case study, including 146 grade II LGGs. Results: The key elements differentiating the transcriptome of GASC isolated from LGG with different prognoses were mostly related to hallmarks of cancer (eg, inflammatory/immune process, NF-κB activation). Consistently, the NF-κB signature extrapolated from the GASC study was prognostic in the dataset of TCGA. Finally, the nuclear expression of the NF-kB-p65 protein, assessed using an inexpensive immunohistochemical method, was an independent predictor of both overall survival and malignant progression-free survival in 146 grade II LGGs. Conclusion: This study demonstrates for the first time the independent prognostic role of NF-kB activation in LGG and outlines the role of patient-based stem cell models as a tool for precision medicine approaches.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias Encefálicas/patologia , Glioma/patologia , NF-kappa B/metabolismo , Células-Tronco Neoplásicas/patologia , Medicina de Precisão , Transcriptoma , Adolescente , Adulto , Idoso , Biomarcadores Tumorais/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Feminino , Estudo de Associação Genômica Ampla , Glioma/genética , Glioma/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , NF-kappa B/genética , Células-Tronco Neoplásicas/metabolismo , Prognóstico , Taxa de Sobrevida , Adulto Jovem
12.
Lab Invest ; 96(9): 959-971, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27348627

RESUMO

Endometriosis is an inflammatory disease characterized by the presence of ectopic endometrial tissue outside the uterus. A diffuse infiltration of mast cells (MCs) is observed throughout endometriotic lesions, but little is known about how these cells contribute to the network of molecules that modulate the growth of ectopic endometrial implants and promote endometriosis-associated inflammation. The aryl hydrocarbon receptor (AhR), a transcription factor known to respond to environmental toxins and endogenous compounds, is present in MCs. In response to AhR activation, MCs produce IL-17 and reactive oxygen species, highlighting the potential impact of AhR ligands on inflammation via MCs. Here, we investigated the possibility that endometrial MCs promote an inflammatory microenvironment by sensing AhR ligands, thus sustaining endometriosis development. Using human endometriotic tissue (ET) samples, we performed the following experiments: (i) examined the cytokine expression profile; (ii) counted AhR-expressing MCs; (iii) verified the phenotype of AhR-expressing MCs to establish whether MCs have a tolerogenic (IL-10-positive) or inflammatory (IL-17-positive) phenotype; (iv) measured the presence of AhR ligands (tryptophan-derived kynurenine) and tryptophan-metabolizing enzymes (indoleamine 2,3-dioxygenase 1 (IDO1)); (v) treated ET organ cultures with an AhR antagonist in vitro to measure changes in the cytokine milieu; and (vi) measured the growth of endometrial stromal cells cultured with AhR-activated MC-conditioned medium. We found that ET tissue was conducive to cytokine production, orchestrating chronic inflammation and a population of AhR-expressing MCs that are both IL-17 and IL-10-positive. ET was rich in IDO1 and the AhR-ligand kynurenine compared with control tissue, possibly promoting MC activation through AhR. ET was susceptible to treatment with an AhR antagonist, and endometrial stromal cell growth was improved in the presence of soluble factors released by MCs on AhR activation. These results suggest a new mechanistic role of MCs in the pathogenesis of endometriosis.


Assuntos
Citocinas/metabolismo , Endometriose/metabolismo , Mastócitos/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Células Cultivadas , Feminino , Humanos , Imuno-Histoquímica , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Mediadores da Inflamação/metabolismo , Interleucina-10/metabolismo , Interleucina-17/metabolismo , Cinurenina/metabolismo , Ligantes , Microscopia de Fluorescência , Pessoa de Meia-Idade , Técnicas de Cultura de Tecidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...